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Abstract: The aim of this paper is to summarize the principles and the applications
of the noising methods, a recent family of combinatorial optimization metaheuristics.
We describe their commons features and their variants and we give the list of their
applications to di�erent combinatorial optimization problems. We also show how
the simulated annealing algorithm and the threshold accepting algorithm can be
considered as noising methods when the components of the noising methods are
properly chosen.

1 The origins of the noising methods

At the beginning of the 1990's, we were studying the application of genetic algo-
rithms to combinatorial optimization problems with strong structural constraints,
like the ones depicted below. Unfortunately, we got only poor results, even when
compared to the ones provided by repeated descents. So, we thought that maybe
the genetic algorithms would be more appropriate if the environment, measured in
some ways by the function f that we want to optimize, could 
uctuate, as it happens
in real life with genetics.

Thus we considered that f is the limit of an evolving function, or equivalently
that we do not know precisely the values taken by f : these values are perturbed
by noises; the range of the noises decreases to zero so that the evolving function
converges towards f . Of course, to get an idea of the new performances of our
genetic algorithms, we applied the same evolving process to the repeated descents.
While the results got by the genetic algorithms remained as poor as before in our
experiments, the surprise came from the repeated descents: the results that they
provided at the end of this evolving process were much better than the ones got
previously with the same CPU time.

The principle of the noising methods was born: to perturb the values taken by
f by decreasing noises while applying a local search method. Then we designed in
1992 the �rst version of a noising method and this one appeared in 1993 [10]. Since
this date, we have been studying di�erent ways to perturb f and di�erent variants
of what has become a family of metaheuristics that we still call noising methods

because they share the same basic principles.
As for the other metaheuristics (for references on metaheuristics, see for instan-

ce [1, 36, 37, 39]), the noising methods are not designed to solve only one special
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type of problems, but to be applicable to various kinds of combinatorial optimization
problems. Such a problem may be described as follows: given a �nite set S and a
function f de�ned on S, �nd the optimum (the maximum or the minimum) of f
over S and an element of S optimizing f . As maximizing a function f is the same
as minimizing �f , we may assume without loss of generality that we deal with
minimization problems. Thus we shall consider from now on a problem with the
following structure:

Minimize f(s) for s 2 S:

The aim of this paper is to present the principles and the applications of the
noising methods. We detail their commons features and their variants and we list
their applications to di�erent combinatorial optimization problems. We also study
the links between them and two other metaheuritics: the simulated annealing algo-
rithm and the threshold accepting algorithm; we show how these two metaheuristics
can be considered as noising methods when the components of the noising methods
are properly chosen.

The paper is organized as follows: the following section recalls some basic
considerations about the notion of neighborhood. Then, in section 3, we describe the
main principles of the noising methods. Section 4 is devoted to the links between
the noising methods and simulated annealing or threshold accepting methods. The
applications of the noising methods are listed in Section 5, just before the conclu-
sions.

2 Elementary transformations, neighborhoods

and descents

Many metaheuristics (sometimes called also local search methods) applied to combi-
natorial optimization problems are based on elementary (or local) transformations.
We call transformation any operation which changes a solution s of S into a solution
s0 of S. Elementary transformations constitute a subset of the set of transforma-
tions; they usually consist in changing one feature of s without changing its global
structure: for instance, if s is a binary string, an elementary transformation could
be to change, for a given i, the bit located in position i in s into its complement. For
a given elementary transformation scheme, the set of the solutions s0 that we can
get by applying such an elementary transformation to a given solution s is called
the neighborhood N(s) of s, and the elements s0 of N(s) are called the neighbors of
s.

Thanks to such an elementary transformation, we can design an iterative im-

provement method (also called a descent for a minimization problem): from the
current solution s, we consider a neighbor s0 2 N(s) of s; if we have �f(s; s0) < 0
with �f(s; s0) = f(s0) � f(s), then s0 becomes the new current solution, otherwise
we keep s as the current solution and we try another neighbor of s. Then, we do
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it again with the current solution until it is impossible to �nd a neighbor of the
current solution s� which is better than s�:

8s0 2 N(s�); f(s0) � f(s�):

Thus, the solution s� provided by a descent is a local minimum with respect to the
adopted elementary transformation (or, similarly, with respect to the neighborhood
induced by it) and is not necessarily an optimal solution.

There exist several ways to explore the neighborhood of a solution s. We recall
three of them below. It is of course possible to imagine some other ways to explore
the neighborhood, including by mixing the three following strategies.

� It can be done at random (as in a classic simulated annealing): then s0 is
randomly chosen in N(s). One drawback of this strategy is that it is memo-
ryless. We may scan the same neighbor several times, instead of considering
another neighbor. Moreover, two successively generated neighbors are glo-
bally more di�erent than when generated systematically (see below); then it is
more di�cult to bene�t by the previous trials in order to reduce the amortized
complexity, what usually involves a great amount of CPU time. Finally, it is
di�cult to be sure to reach a local optimum. On the other hand, if the number
of trials is very low, it can sample the solution-space more e�ciently than the
strategies below. Similarly, if the size of the neighborhood is very large, it can
be the best way of looking for an interesting neighbor.

� The exploration can also be systematic or cyclic (see [23]): the neighbors are
ranked in a certain order and they are all considered in this order once, before
being considered for a second time and a neighbor better than the current
solution is accepted as soon as it has been discovered; for a descent, this
process is applied until a complete cyclic exploration of the neighborhood has
been performed without �nding any better neighbor: then the �nal solution
is a local minimum with respect to the adopted elementary transformation.

� The third classic exploration, that we can call exhaustive, is the one applied
for instance in a classic tabu search or in a deepest descent: the whole neigh-
borhood is explored in order to �nd the best neighbor of the current solution.
The main drawback of this strategy is that, when the size of the neighborhood
is quite large, it can be very long to explore it entirely between two adopted
transformations.

The noising methods are based on elementary transformations. The next
section is devoted to the principles and variants of these methods.

3 Principles of the noising methods

As said above, to minimize the function f , the noising methods do not take the true
values of f into account but consider that they are perturbed in some way by noises
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in order to get a \noised" function fnoised. It means that, with respect to what
happens in a descent, when the variation �f(s; s0) is computed in order to know
whether s0 is accepted instead of s or not, we do not compute �f(s; s0) from the
true values taken by f , but we consider that these values taken by f are perturbed
by noises and thus we compute in fact the variation �fnoised(s; s0). During the run
of the algorithm, the range of the perturbing noises decreases (typically to zero, but
it often happens that we may stop the process before), so that, at the end, there
is no signi�cant noise and the optimization of fnoised leads to the same solution as
the one provided by a descent applied to f with the same initial solution. Thus it
is necessary to specify how to perturb f to get a noising method.

More generally, several questions must be answered in order to design a noising
method scheme:

1. How to perturb f in order to get fnoised?

2. How and when to make the range of noise decrease?

3. How to choose the maximum (and initial) and the minimum (and �nal) values
of the range of noise?

4. How to explore the neighborhood?

5. Is it possible to add other ingredients to get interesting variants?

Of course, the answers to these questions depend on the problem to solve and
on what the user wants to do: he or she has the possibility to choose his or her
own components, and so, by designing his or her own noising method scheme, to
diversify his or her investigations. Nonetheless, we give below some possible answers
to the previous questions.

3.1 How to perturb f?

Though this distinction is a little contrived, we may distinguish three main ways to
perturb f : by noising the data, by noising the variations of f , or by forgetting a

part of the data. They are described more precisely below.

3.1.1 Noising the data

The �rst possibility to perturb f consists in adding the noises to the data. For
instance, if f is a linear function of n variables xi (with 1 � i � n):

f(s) =
nX

i=1

aixi;

we may perturb the data ai by adding some noises ri to them:

fnoised(s) =
nX

i=1

(ai + ri)xi:
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We may insert this way of noising the data in the following noising method scheme:

- Initializations
- repeat

add noises to the data to get fnoised
apply a descent to fnoised from the solution computed

at the previous iteration
reduce the range of noise

- until the range of noise is low enough
- apply a �nal descent to f from the solution provided by the previous loop.

In other words, we �rst compute an initial solution. Then, for each repeat-
loop, noises are added to the data and a descent is applied with respect to these
noised data, i.e., to fnoised; the solution found during this application of the descent
becomes the initial solution of the next application of the descent. The range of
noise decreases between two descents to a �xed value (for example zero). Notice
that it is not always necessary to apply a complete descent to fnoised: for instance,
the exploration of the neighborhood of the local (with respect to the noised data)
minimum found by the descent is systematically useless. Thus it is often better
(because it saves CPU time that we can use di�erently) to apply just the beginning
of a descent and to stop it when a given number of (adopted or not) elementary
transformations has been performed (for instance, the number of elementary trans-
formations necessary to scan a neighborhood a few times). Anyway, it is better to
apply the �nal descent to f completely.

Usually, the added noises are chosen randomly according to a given law of
probability. For instance, in the �rst design of a noising method [10], the noises ri
(1 � i � n) are chosen with a uniform law into an interval [�r;+r], where r is the
rate of noise at the considered iteration, and the initial (and maximum) value rmax

of r depends on the data. But, here also, we may imagine di�erent possibilities to
choose the noises. Some examples are:

� ai becomes ai + ri;

� ai becomes ai � (1 + ri);

� the probability law is not necessarily uniform; it can be a Gaussian law or
something else;

� the interval in which ri is drawn is not necessarily centered on 0.

This pattern has been applied in particular in the �rst noising method [10]
and, since, in [2-4, 6-9, 11, 20-22, 26-32, 34, 35, 38].
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3.1.2 Noising the variations of f

We tried another possibility (see [12]): it consists in perturbing the variations of f .
When a neighbor s0 of s is tried, we do not consider the genuine variation �f(s; s0)
but a noised variation �fnoised(s; s0) de�ned by:

�fnoised(s; s
0) = �f(s; s0) + r(s; s0)

where r(s; s0) denotes the noise (in fact, it depends not only on s and s0, but also
on the number of the iteration: if s and s0 are considered twice, the noise r(s; s0) is
not necessarily the same).

As for before, the law of probability followed by the noises r(s; s0) can be
uniform on an interval centered at the origin or not, or Gaussian, or something
else (for instance, we tried a distribution involving the hyperbolic tangent of the
variation of f in the �rst version of [12]). This way of perturbing f by adding the
noises to its variations has been developped in [12-18] and [40] (similar ideas are
also considered in [33] to study the convergence of such metaheuristics). We will see
latter that an appropriate choice of the law of probability (and of the other elements
of the noising method scheme) leads to the pattern of a classic simulated annealing
or of a threshold accepting algorithm.

The pattern of this kind of noising can be the following:

- Initializations
- repeat

repeat
consider a neighbor s0 of the current solution s
compute the noised variation of f :

�fnoised(s; s0) = �f(s; s0) + r(s; s0)
where r(s; s0) denotes the random noise

if �fnoised(s; s
0) < 0, then adopt s0 instead of s

until a �rst criterion is ful�lled
reduce the range of noise

- until a second criterion is ful�lled
- apply a �nal descent to f from the solution provided by the previous loop.

In this pattern, the �rst criterion (in the inner repeat-loop) gives the number of
elementary transformations tried with a given rate of noise. The second criterion
gives the number of decreasings of the rate of noise.

3.1.3 Forgetting a part of the data

The third and most recent way [14] (similar ideas are developped in [9]) consists in
perturbing f by forgetting a part of the data. For instance, in [15], we consider the
problem consisting in partitioning the vertex-set of a graph of which the edges have
negative or positive weights in order to minimize the sum of the weights of the edges
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with their two extremities in a same set. Then, we designed two ways to \forget" a
part of the data:

� in the �rst one, a part of the vertices is selected and the weight of an edge
is taken into account for the computation of fnoised only if its two extremities
have been selected; in this process, the rate of noise (less than or equal to one)
gives the ratio of \forgotten" vertices;

� in the second way, we do the same with the edges instead of the vertices: a
part of the edges is selected and an edge is involved in the computation of
fnoised if and only if it has been selected (for the problem tackled in [15], it is
the same as giving a weight equal to zero to a forgotten edge).

The scheme of such a noising method can be the following:

- Initializations
- repeat

forget a proportion of data equal to the rate of noise
apply a descent to the remaining data

from the solution computed at the previous iteration
reduce the range of noise

- until the range of noise is low enough
- apply a �nal descent to f from the solution provided by the previous loop.

As for the noising of the data, it is not always necessary to apply a complete descent
(except the last one).

This way of noising f gave very good results for the functions studied in [9]
and in [15], but it is not obvious that it would be the general case: more experiments
are still necessary to draw conclusions.

It is worth noticing that, from a theoretical point of view, the �rst and third
ways to noise f are in fact special cases of the second type, since the rule to known
whether a neighbor s0 is accepted or not instead of the current solution s comes
down to know whether a number depending on s and s0 (the noised variation of
f) is negative or not. For instance, for the traveling salesman problem with the
neighborhood induced by the usual 2-opt transformation, noising the data with a
uniform noise is the same as noising the variation with a noise following a probability
law given by the sum of four uniform laws. Anyway, it is usually more convenient
to apply the �rst or the third ways of noising f than their equivalents with respect
to the noising of the variations, because it can be less natural, more tedious, and
sometimes very di�cult to �nd the equivalent probability law.
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3.2 How and when to make the range of noise decrease?

In the �rst noising method, the rate of noise r decreases arithmetically during the
running of the algorithm from a maximum rate of noise value rmax to zero (thus
the arithmetical decreasing ratio, the maximum rate of noise and the total number
of applied noised descents are related). It is also the case for the majority of the
applications reported in this paper, sometimes with a minimum value rmin of the
rate of noise which is not equal to zero. Then, if N denotes the total number of
decreasings, the arithmetical decreasing rate is equal to (rmax � rmin)=N .

Nevertheless, other kinds of decreasing have been studied. More precisely, a
geometrical decreasing was tried in [12, 13], associated with a \logarithmic noise"
(the noise follows a probability law given by the logarithm of a uniform law) as
well as an arithmetical one associated with a uniform noise. Still in [12], we tried
another possibility (for a noising method scheme inspired by simulated annealing)
in which the rate of noise was allowed to increase from time to time. More precisely,
let k be a given number; a function � is designed to give the number �(i) of bad
elementary transformations that we would like to accept between the iterations i
and i+ k; if the number of bad elementary transformations really accepted between
iterations i and i + k is less than �(i), then the rate of noise increases, otherwise
it decreases. The experiments done in [12] for the traveling salesman problem show
that this \adaptive" method can lead to very good results, often better than the
ones provided by the same method but with a decreasing rate of noise.

It seems that the frequency of the decreasing is not a crucial point, at least of
course if its value is not too low (for instance, decreasing the rate of noise from its
maximum value rmax to zero suddenly is usually not a good choice). For example,
the rate of noise may decrease after each elementary transformation, at least theo-
retically; this could avoid to deal with an extra parameter to tune. Anyway, for
practical reasons, it can be more convenient to make the rate of noise decrease less
often, for instance when an exploration of the neighborhood is completed (or when
a number of elementary transformations equal to the size of the neighborhood has
been performed).

3.3 How to choose rmax and rmin?

3.3.1 Choice of rmax

The choice of rmax seems to be the most important one (of course after the choice of
the number of elementary transformations that the user wants to apply to solve his
or her problem; this value is directly related to the CPU time that he or she accepts
to spend). So, in general, it is a paramater that the user must tune.

Anyway, some experiments done with the traveling salesman problem (see [16])
show that the sensitiveness of this parameter is not very sharp: a value of more or
less 10 % from the \best" value of rmax gives almost the same �nal result and even
a value of more or less 20 % gives very good results. One consequence is that it is
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not always necessary to �nd a sharp tuning for rmax.
Moreover, it is sometimes possible to tune rmax automatically, as in [18] (see

also [15] and [17]). In this paper, we designed a generic automatic noising scheme
which can be applied with various types of noise or to various problems by changing
only the type of noise or the features de�ning the problem; no parameter of this
generic method is changed from one noising method scheme to another or from
one problem to another. The only parameter given by the user is the CPU time
that he or she wishes to spend to solve his or her problem. Broadly speaking, the
principle of this automatically tuned variant consists in applying the considered
noising method several times, in the sense that the rate of noise decreases several
times from a maximum value to zero. The duration of each run is twice the one
of the run performed just before; the �rst run is very short. This repetition of the
noising method succeeded, for the problems in [15, 17, 18], in computing a suitable
value for rmax which is improved during the process (see [18] for details).

3.3.2 Choice of rmin

In general, rmin is a parameter to tune. It must be chosen so that minimizing fnoised
with a rate of noise less than rmin would lead to the same result as minimizing f
itself. If so, it is clearly useless to try such values for the rate of noise: we can only
waste CPU time without improving the current solution. So, choosing a value not
equal to zero for rmin may save CPU time. Anyway, if the user does not want to
tune an extra parameter, it is always possible to choose rmin = 0, even if it consumes
a little more CPU time. When it is not easy to have a broad idea of a good value
for rmin, it can even be a good deal to do so, because tuning a parameter is not
always obvious, especially if the user is not an expert. Moreover, a too high value of
rmin may damage the e�ciency of the method very much. So, in the automatically
tuned noising method of [18], we preferred to �x rmin = 0 and to increase the CPU
time a little bit, rather than having to tune rmin.

3.4 Exploration of the neigborhood

In the majority of the applications of the noising methods reported here, the explo-
ration of the neighborhood is systematic (or cyclic; see Section 2). But it happens
that the exploration is a random one (especially when the noises perturb the data,
as described in Section 3.1.1), or even partly systematic and partly random. For
instance, if the elementary transformation involves two parameters (as for example
the 2-opt transformation usually applied to the traveling salesman problem), the
exploration can be done randomly on the �rst parameter and, for each value of the
�rst parameter, the exploration can be systematic.

As said above, the main advantages of a systematic exploration are that we
may sometimes bene�t by the scanning of the previous neighbors to reduce the
amortized complexity and to increase the diversity of the exploration by avoiding
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to scan twice the same neighbor before scanning a neighbor not yet considered.
Another advantage of such a strategy is that we can save CPU time with respect to
an exhaustive exploration, but also with respect to a random one because drawing
random numbers is a procedure which can consume a rather great amount of CPU
time.

3.5 Other ingredients

Independently of the di�erent schemes that we can get by combining the possibilities
described above, it is possible to design some other variants. The two ones that we
detail below can be applied to other metaheuristics. In our experiments with noising
methods, they often appear fruitful.

3.5.1 Alternation of noised and unnoised phases

The �rst variant consists in alternating noised phases with unnoised descents. More
precisely, in order to stay closer to the original function f , we may apply a given
number � of elementary transformations with respect to the noised function fnoised,
then a descent with respect to f until a local minimum is reached, then again �
noised trials, then a descent with respect to f , and so on. This variant usually
allows to check a fair number of local minima (with respect to the original data)
which could provide good solutions.

For the �rst type of noising methods (noises are added to the data), we may
alternate a noised descent (that is, a descent with respect to fnoised; of course,
new noises are computed before applying each noised descent) and an unnoised
one (that is, a descent with respect to f). For the second type (noises are added
to the variations of f), it seems to be a good choice to give to the noised phase
a number of elementary transformations which is about the same as the number
of elementary transformations performed by a descent. From our experiments, it
appears that a descent performs an average of about 4� elementary transformations,
where � is the size of the neighborhood. Then we can perform successively � =
4� noised elementary transformations, an unnoised descent, � noised elementary
transformations, an unnoised descent, and so on.

3.5.2 Periodic restarts from the best computed solution

The second variant consists in coming back to the best computed solution perio-
dically. Indeed, because of the bad transformations sometimes accepted, it may
happen that we leave an interesting part of the space of solutions for a less interesting
one. So one possible strategy is to periodically restart the current solution with the
best solution found since the beginning. Of course, it is useless (and even harmful) to
restart the current solution too often. In order not to introduce a new parameter, the
restart period was �xed as follows in [12]. Let 
2� be the total number of elementary
transformations performed by the method (where � is the size of the neighborhood);
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then the current solution is restarted with the best computed solution after every
cluster of about 
� elementary transformations (in other words, there are about 

restarts), what seemed to give a good frequency.

4 The noising methods as generalizations of other

metaheuristics

By combining all the ingredients detailed above, we may get many di�erent noising
method schemes, including the simulated annealing method or the threshold accep-
ting algorithm. It is what we show now (the possibility of such a generalization is
also noticed in [33]).

4.1 Links between the noising methods and simulated an-

nealing

Indeed, we may consider that the second type of noising (noises are added directly to
the variations of f) is a generalization of simulated annealing if we choose properly
the parameters, especially the probability distribution.

In simulated annealing, the current solution s is replaced by one of its neigh-
bors s0 with a probability equal to minf1; exp(��f(s; s0)=�)g, where � is the de-
creasing parameter called temperature; then a bad transformation (�f(s; s0) > 0) is
accepted if we have:

exp(��f(s; s0)=�) > p;

where p is a random number uniformly drawn into ]0, 1[ or, equivalently, if the
following condition is ful�lled:

�f(s; s0) + � ln p < 0:

Thus, it is the same result as adding to the variation of f a noise equal to � ln p. Here
the probability law is given by the logarithm of a uniform random variable drawn
into ]0,1[, and � gives the value of the rate of noise. Then it is easy to choose the
other ingredients of the noising method scheme to get a classic simulated annealing
(in particular, the decreasing of the rate of noise � will be geometric in this scheme;
the exploration of the neighborhood is usually a random one for simulated annealing,
though a systematic one is sometimes applied, see [23]). Variants of this \logarithmic
scheme" have been studied in [12, 13, 15], as well as a uniform distribution.

4.2 Links between the noising methods and threshold ac-

cepting algorithms

Similarly, we may consider that the noising methods are a generalization of the
threshold accepting algorithms designed by Dueck, Scheurer and Wirsching [24, 25].
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In such a method, the current solution s is replaced by one of its neighbors s0

if the variation �f(s; s0) does not get bigger than a given threshold. This threshold
depends on the iteration and decreases during the process to zero. So, with respect
to simulated annealing, the main di�erence relies in the fact that the acceptance
criterion is no longer the exponential Metropolis criterion. More precisely, if k
denotes the current iteration, s0 is accepted instead of s if we have

f(s0)� f(s) < �k;

where �k is the threshold of the current iteration, with �k � 0, �k+1 � �k and �� = 0
if � denotes the total number of elementary transformations performed.

This criterion avoids the computation of an exponential and the call to a ran-
dom number generator, what usually saves CPU time. One of the main di�culties
of this method is the determination of the appropriate values for the thresholds
�k, though Alth�ofer and Koschnick [5] have related some convergence properties of
threshold accepting methods to those of simulated annealing (but their proofs are
not constructive).

It is quite easy to see that these thresholds �k can be seen as noises substracted
from the variation �f(s; s0) of f . Thus, threshold accepting algorithms can be
considered as noising methods with the second way of perturbing f described above,
and with a noise equal to ��k when iteration k is performed.

5 Applications of the noising methods

The �rst paper presenting a noising method [10] dealt with the following clique

partitioning problem: given a complete non-oriented graph G = (X;E) of which the
edges are weighted by (negative or positive) integers, �nd a partition of X into p(G)
subsets so that the sum of the weights of the edges with their two extremities in the
same subset is minimum. As explained above, in this noising method, the noises
were added to the weights of the edges before applying a descent. This can be done
for any problem represented by a weighted graph and, more generally, for problems
with numerical data.

But sometimes the problem can be more \structural" than \numerical". It
is one of the reasons that led us to design noising methods in which noises are
added to the variations of f and not to the data. Another possibility to deal with
such problems is that adopted by Bogdanova [7] for the following NP-hard problem,
arising in coding theory. Let n and d be two positive integers; let Z be the set
f0; 1; 2; 3g and let Zn be the set of all n-tuples de�ned over Z. A set C � Zn is
called a 4-ary M -code if j C j= M , and a 4-ary (n;M; d)-code if j C j= M and
if the Hamming distance � between two distinct elements of C is at least d. The
largest value of M such that a 4-ary (n;M; d)-code exists is denoted by A4(n; d).
To determine lower bounds of A4(n; d), Bogdanova de�nes the function fM over the
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set of 4-ary M -codes as follows:

fM (C) =j f(x; y) 2 C2 such that �(x; y) < dg j

and, for a given value M , she tries to minimize fM over the set of 4-ary M -codes
C. If such a M -code C with fM (C) = 0 is found, then A4(n; d) � M . In this
case, the same process is applied to fM+1. In order to minimize fM for any given
value of M by the help of the noising method, Bogdanova gives a random value
k(v) 2 [1� r; 1+ r] to each element v of Zn, where r is the arithmetically decreasing
rate of noise. Then she de�nes the noised function fMnoised over the set of 4-ary
M -codes by:

fMnoised(C) =
X

(x;y)2C2 and �(x;y)<d

[k(x) + k(y)]

2
:

Notice that, when the rate of noise r is equal to 0, fMnoised = fM . By means of this
noising method, she succeeded to break several lower bounds of A4(n; d).

Anyway, even if the applications of the noising methods are not yet very
numerous, it is not possible to detail all of them here. So we just summarize the
�eld and references for the applications that we know:

� partitioning a weighted graph into cliques [10, 14, 15, 18, 19, 27, 28, 38];

� traveling salesman problem [2, 12, 16, 18, 30, 31];

� aggregation of linear orders into a median order (linear ordering problem) [13,
17-19];

� scheduling problems [4, 34, 35];

� covering and packing problems in coding theory: [7, 20, 21];

� 0-1 multidimensional knapsack problem [8, 26, 29];

� the multi-resource generalized assignment problem [3, 6];

� the prize-collecting Steiner tree problem [9];

� multi-criteria decision aid [11];

� the task allocation problem [22];

� the design of discrete manufacturing processes: [32];

� the alignment of graphemes and phonemes in linguistics: [40].

The noising methods involved in these applications may follow the basic noi-
sing method scheme developped in [10] as well as the two other types of noising f .
Their results usually (but not always) show that they can compute good solutions,
often better than those found by other metaheuristics as simulated annealing.
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6 Conclusion

It would be unwise to conclude that the noising methods may solve any NP-hard
problem e�ciently. For instance, we tried to apply them to the computation of some
Ramsey numbers, but we did not succeed to improve the currently best results.

Thus, the aim of this paper is only to show, through the principles and the
applications of the noising methods, that this family of metaheuristics deserves
interest because they are simple to implement and because they may provide good
solutions within reasonable CPU times for quite di�erent problems. There remain
the problem of choosing the noising method scheme and, then, that of tuning the
parameters of the chosen noising method. Some studies already mentioned [15, 18]
show that it is possible to tune them automatically so that the user has just to give
the desired CPU time before applying these methods.

Another subject which could be investigated in the future deals with the con-
vergence of the noising methods. If we consider them as generalizations of simulated
annealing or of threshold accepting methods, we bene�t from the convergence re-
sults established for these metaheuristics (see for instance [1] for references about
simulated annealing and [5] for threshold accepting methods): they show that there
exist some noising method schemes (with an in�nite number of iterations) which
surely converge towards an optimal solution. Notice also that Johnson and Jacob-
son studied in [33] the convergence of the �rst noising type (noises added to the
data): they give su�cient conditions to converge (still with an in�nite number of
iterations) towards an optimal solution.

These aspects of the noising methods (convergence and parameter tuning) as
well as others such as their application to other combinatorial optimization problems
or their hybridization with other metaheuristics (especially with genetic algorithms,
as in [13]) will surely be the topics of our future research e�orts devoted to this �eld.
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